21. $\mathfrak{G l e n l o l a ~ C o l l e g l a t e ~ S c h o o l ~}$
excellence though commiment condiluxidion end caring
1,7A

## Ecologicall relaitionshilps \& energy flow

# picssee cloyego nevermintno 

 disrobeitivy icontummy cosymeets abathit
# species ecology environment 

 biodiversity community ecosystem habitat
## LEARNING OUTCOMES

Understand the meaning of the terms biodiversity, population, habitat, environment, community and ecosystem


# COMNTNH 


the rumber) of one type ofrorganism (species) wi w $\rightarrow$ तh an area


A group of organisms with similar characteristics tha can interbreed to produce fertile offspring

## the environment

 All the racows surfoundiny an oryanilini
## abiotic and biotic factors

These are the non-living, physical parts of the environment, including:


- Wind
- Water
-pH
- Light
- Temperature



# biotic factors 

## These are the living parts of the environment, including:



## An ECOSYSTEM is the name given to all the living things, COMMUNITY', and their

ENVIRONNENT in a particular area.

(c) w.w.w.freeinishphotos.com <br> \title{
the prace where an organism inves
} <br> \title{
the prace where an organism inves
}


## https//www.bbc.co.uk/education/clips/zv69jxs




| ecology |  |  |
| :---: | :---: | :---: |
| study of communities in their environment <br> biodiversity | Group of organisms with similar features able to reproduce fertile offspring <br> ecosystem | place where an organism lives |
| the number \& types of species in an area | the community and its environment | non-living part of the environment |

# LEARNINC OUTCOMES 

- Understand that the Sun is the source of energy for most ecosystems on Earth Understand the role of green plants as producers in capturing this energy and making it available to other organisms
- Understand food chains and webs and be able to identify producers, consumers and trophic levels;


The living organisms are all dependent on each other through feeding relationships.
However, all life on Earth relies on the energy from the Sun.

- Life can exist on Earth because of sunlight energy.
- Plants capture light energy through the process of photosynthesis.
- And make organic compounds such as carbohydrates

The compounds made by plants are eaten by other organisms, so plants make the sunlight energy available to other organisms.


## produce <br> consume

## primary secondary

tertiary
plants are known as

they make their own food by photosynnthesis

## animals are known as coMsUMERS they feed on other organisms



The sequence of producers trapping the Sun's energy and this energy then passing on to other organisms as they feed is known as energy flow.

The sequence can be drawn as a food chain with arrows from producer to consumers.
The arrows represent the direction of the energy flow.

## a FOOD CHAIN


leaf $\rightarrow$ caterpillar $\rightarrow$ bird $\rightarrow$ cat

Producer

Primary<br>consumer

Secondary<br>consumer<br>Tertiary<br>consumer

## activity

- Your teacher will give you a card from a food chain.
- Find the other organisms in the food chain.
- Line up in the correct order


# Herbivores eat only plants. 

## 4

## MMA1

Carnivores eat only animals.

## Omnivores eat both animals and plants.



The different stages in the feeding sequence are called
TROPHIC LEVELS (or 'feeding levels').
The first organism in the food chain (the producer) is TROPHIC LEVEL 1
The second organism in the food chain (the primary consumer) is TROPHIC LEVEL 2 etc

## Sample Food Chains



Most organisms will not feed on only one other organism.
This means that food chains are interlinked to form
food webs.

## FQOR WEB JIGSAW

# Draw out a food chain 

 containing 4 different organisms\& label the trophic levels<br>and names for each level.

## changes to food webs



What would happen if all of the grass died?

## What would happen if the grass died?

- The grass is the producer, so if it died the consumers that feed on it - rabbits, insects and slugs - would have no food.
Whey woy starve and die unfes they could move to an otherhatitat.
- At the other animals in the food web would die too, becouset heir food supples wou d have died outl the populations of the consumers would fall as the population of the producer fell.


## What would happeh if the

## population of slugs decreased?

- Slugs, rabbits and insects all eat grass.
- If there were fewer slugs there would be more grass for the rabbits and insects.
- With more food the populations of rabbits and insects would increase.
- However, the thrushes would have to eat more insec to maintain their population, so it is also possible that the population of insects couldidecrease.
- This in turn may reduce the populations of volie and frogs.


## What would happen if the population

## of insects decreased?

- There would be more food for the rabbits and slugs, so their population would increase.
- However, there would be fer od for the frogs and voles, so their populationix. ould decrease.
- This means less food for the foxes and hawks.
- However, there are likely to be more rabbits and thrushes for them to eat, so their populations arelikely to stay the same.


What would happen if a disease killed all of the snakes?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

What effect would there be if, due to poor spring weather, the rowan flowers were not fertilised?

# LEARNING OUTCOMES 

Use data to interpret and explain in terms of the amount of energy available at each trophic level, decreased due to heat from respiration, excretion and egestion and uneaten structures,
and understand why shorter food chains are more efficient



this heat is lost by
conduction, convection and radiation, to the atmosphere

changed into kinetic energy for movement

## animals need to move to


find a mate

catch food and
escape predators




## energy is used to <br> produce new organisms

## not all food eaten is digested




## ENERGY LOSs \& TROPHIC LEVELS

Trophic Level 4

Trophic Level 2

Most food chains are relatively short, with
just four organisms.
This is because at each stage of energy transfer (including trophic level 1 ), some energy is lost.

Not all of the energy from the sun is trapped by producers. This is because:

## $\therefore$ light is

light passes through eavesand misse chloroplasts


Light energy is used to evanorel e water from leaves.

# ENERGY LOSS AT OTHER TROPHIL LEVELS 

The transfer of energy between plants and animals and between animals of different trophic levels is usually 10-20\%. This means that for every 100 g of food material available, only between 10 and 20 g is used to build animal tissue (as 'biomass') in the primary consumer's body.

# The loss of energy between plants and 

 consumers and between consumers is due to
## three main reasons:

1. Not all the available food is eaten.

Most carnivores do not eat the skeleton or fur of their prey, for example.
2. Not all the food is digested some is lost as faeces in egestion.
3. A lot of energy is lost as heat in respiration. Respiration provides the energy for movement, growth, reproduction etc. Heat is produced as a byproduct of respiration. Heat is lost and cannot be passed on to the next trophic level.

## ENERGY FLOW



Calculate the percentage of the energy taken in by the caterpillar which is used for growth

ENERGY IN = 200J
ENERGY USED IN GROWTH = 33J

PERCENTAGE $=33 / 200 \times 100$

$$
=16.5 \%
$$

Respiration


Calculate the energy lost in respiration and the percentage used to make new tissue.

## Calculating energy efficiency

This bullock has eaten 100kJ of stored energy in the form of grass, and excreted 63kJ in the form of faeces, urine and gas. The energy stored in its body tissues is 4 kJ . So how much has been used up in respiration?

The energy released by respiration

$$
=100-63-4=33 k J
$$

Only 4 kJ of the original energy available to the bullock is made into new tissue and is available to the next stage, which might be humans.

The percentage of the original energy used to make new tissue

$$
=4 / 100 \times 100=4 \%
$$

The percentage of the original energy used to make new tissue is known as the energy efficiency of an organism.


Energy lost as heat, waste products and uneaten parts

## ENERGY EFFICIENCY

This is the percentage of the energy that an organism consumes that is used to make new tissue.



## Shorter food chains

Food production is more efficient if the food chain is short, because a higher percentage of energy is available to us.


http://www.bbc.co.uk/bitesize/ks3/science/or ganisms behaviour health/food chains/revi sion/8/
http://www.bbc.co.uk/bitesize/ks3/science/or ganisms behaviour health/food chains/revi sion/9/


## Build an <br> energy pyramid

| GRASSLAND | POND | OCFAN |
| :---: | :---: | :---: |
| Grass <br> 5000 kJ | Algae <br> 9700 kJ | Phytoplankton <br> 8500 kJ |
| Grasshopper <br> 500 kJ | Mosquito larva <br> 700 kJ | Zooplankton <br> 900 kJ |
| Rat <br> 75 kJ | Dragonfly larva <br> 60 kJ | Herring <br> 80 kJ |
| Snake <br> 7.5 kJ | Roach <br> 5 kJ | Seal <br> 8 kJ |

http://www.bbc.co.uk/education/g uides/z2m39j6/activity

# LEARNING OUTCOMES 

- Construct pyramids of numbers and biomass as models of food chains and explain the difference
Explain the advantages and disadvantages of each type of pyramid
Understand the difficulties caused by organisms feeding at two different trophic levels.


## ECOLOCCAL




## PYRAMIDS OF NUMBERS

- The number of organisms at each stage of a food chain (i.e. at each trophic level) can be represented by a pyramid of numbers.
- Each bar represents a trophic level and is drawn the same height.
- The width of the bar represents the number of organisms at that trophic level.
- There are fewer organisms at each level because energy is lost by each organism.



## Draw Pyramids of Numbers for the following data.

| Organism | Stinging <br> nettle plants | Caterpillars | Robin |
| :---: | :---: | :---: | :---: |
| Numbers | 15 | 12 | 1 |


| Organism | Single <br> hawthorne <br> bush | Caterpillars | Dunnock |
| :---: | :---: | :---: | :---: |
| Numbers | 1 | 12 | 1 |

# The problem with a pyramid of numbers 

 is that it is not always pyramidshaped, as it does not take into account the size of the organisms involved, es: one oak tree will support many more organisms than one grass plant

Sparrowhawk


Blue tit

# Inverted pyramid of numbers 



## Pyramids of numbers that include parasites may appear top heavy, as many parasites will feed on one consumer.



## Advantages \& Disadvantages of Pyramids of Numbers

## ADVANTAGES

Easy to count

## DISADVANTAGES

Ignores sizes of organisms

No organisms get killed
Difficult to convert e.g. grass plant leaves to numbers which can be worth comparing with others

## PYRAMIDS OF BIOMASS

Biomass represents chemical energy stored in the organic matter of a trophic level.
The units of a pyramid of biomass are
units of mass per unit area,
often grams per square meter ( $\mathrm{g} \mathrm{m}^{-2}$ ) or as energy content, (joules, J)
The biomass is found by measuring the dry mass of the organisms at each trophic level. This requires killing the organisms.


Pyramid of numbers


Sparrowhawk


Use the data below to draw a Pyramid of Biomass
for the hawthorne Pyramid of Numbers you drew previously.

| Organism | Single <br> hawthorne <br> bush | Caterpillars | Dunnock |
| :---: | :---: | :---: | :---: |
| Biomass/J | 75000 | 7200 | 680 |

# Advantages \& Disadvantages of Pyramids of Biomass 

## ADVANTAGES

Amount of energy in a trophic level more accurately represented

## DISADVANTAGES

Organisms must be collected and killed in order to measure biomass.

## Difficult to catch/weigh all organisms

The biomass of an individual can vary throughout the year, e.g. an oak tree will have a much greater mass in June than December

## Another difficulty in producing both

 pyramids of number and biomass arises if organisms feed at two different trophic levels e.g. an organism that eats both plants and animals.

## QUESTION 4 HOMEWORK BOOKLET



http://www.bbc.co.uk/schools/gcsebitesize /science/aqa/
Chose: food chains, energy, biomass, cycles< energy in biomass < activit

## LEARNING OUTCOMES

Use and construct keys to identify organisms and classify them into major groups based on the observable features.

## USily ando

GOMSHMCHID


- Keys are used to identify unknown organisms.
- Dichotomous keys, used in biology, consist of a series of two part statements that describe observable features of organisms.
- At each step of a dichotomous key you are presented with two choices. As you make a choice about a particular feature or characteristic of an organism you are led to a new branch of the key. Eventually you will be led to the name of the organism that you are trying to identify.


## ACTIVITY: CONSTRUCTING A KEY

1. Give your group of items a name, e.g. leaves, branches and write this at the top of a poster page
2. Write descriptive words on the post-its for each of the items in your bag, keep them with the item they describe.
3. From your descriptions find one observable feature which you can use to divide the items into 2 groups
4. Write the feature on your poster below the name and draw to lines from it, one to the left the other to the right.
5. Write your decision on these lines, e.g. yes, no; 2, more than 2 ...
6. Divide your items into the 2 groups.
7. Look at each group separately and again use your descriptions to divide the items into 2 groups based on a single observable feature.
8. Repeat steps $4-6$
9. Continue until each group has only one item and stick $k$ this down on the poster

Is the branch
yes


## A branching key:



## A numbered key:

1. a. long, tubular objects ..... go to \#2
b. short, non-tubular objects ..... go to \#4
2. a. constructed from plastic ..... go to \#3
b. constructed from material other than plastic ..... pencil
3. a. green \& grey ..... highlighter
b. blue \& clear ..... pen
4. a. black \& silver pencil sharpener
b. silver ..... paper clip


- Carefully examine and think about the observable features of the 8 aliens and create a dichotomous key using some of these characteristics.



# Use the key booklet 

to identify the organisms described below.

## broad Leaved trees

This trees leaves are green all over and have a hairy upper surface. They are rounded with a pointed tip and they are larger on one side of the midrib than the other. The edges of the leaves are toothed, but they have no lobes or prickles. The stalk is short and rounded and bears a single leaf.

## LEAF LITTER

This wingless invertebrate has a waistless segmented body with 3 pairs of legs. It uses a spring under its abdomen to move by jumping.

## CRASSLAND

This 6 legged invertebrate has a broad body with a triangle shape on its back. It has 2 pairs of wings; one pair forms a protective case. It moves by flying or walking and has no obvious snout.

## GARDENWEEDS

This spineless weed has smooth edged, arrow shaped leaves. The stem trails along the ground and produces pink and white trumpet shaped flowers.



## Dichotomous Key for Leaves

1. Compound or simple leat

1a) Compound leat (leaf divided into leaflets)
$\qquad$ go to step 2
1b) Simple leaf (leaf not divided into leaflets)
$\qquad$ go to step 4
2. Arrangement of leaflets

2a) Palmate arrangement of leaflets (leaflets all attached at one central point)

Aesculus (buckeye)
2b) Pinnate arrangement of leaflets (leaflets attached at several points)
$\qquad$
3. Leaflet shape

3a) Leaflets taper to pointed tips
3b) Oval leaflets with rounded tips
.........................................Robinia (locust)
4. Arrangement of leaf veins

4a) Veins branch out from one central point ................................................go to step 5
4b) Veins branch off main vein in the middle of the leaf. go to step 6
5. Overall shape of leat

5a) Leaf is heart-shaped........Cercis (redbud)
5b) Leaf is star-shaped
........................Liquidambar (sweet gum)
6. Appearance of leat edge

6a) Leaf has toothed (jagged) edge
..............................................Betula (birch)
6b) Leaf has untoothed (smooth) edge Magnolia (magnolia)

## LEARNING OUTCOMES

Understand why classification is needed for:

1. Identification
2. the study of how organisms have changed through time
3. the comparison of biodiversity
4. conservation of species

# LEARNING OUTCOMES 

Use observations of organisms to help describe the main features of the five kingdoms (protoctista, bacteria, fungi, plants and animals), to include:

- mode of nutrition
- cell wall
- cellular organisation


All living organisms are divided into five large groups called Kingdoms.
The 5 kingdoms are:

$$
\begin{aligned}
& \text { Bacteria } \\
& \text { Protoctista } \\
& \text { Fungi } \\
& \text { Plants } \\
& \text { Animals }
\end{aligned}
$$

All the organisms in each kingdom have specific features in common.

These include:

1. their mode of nutrition (how they feed)
2. whether they have a cell wall
3. cellular organisation;

| Group | Nutrition | Cell wall | Cellular organisation |
| :--- | :--- | :--- | :--- |
| Protoctista | Saprophytic or <br> photosynthetic | Cellulose cell wall <br> or none | Single celled with nucleus <br> or algae that are not truly <br> multicellular |
| Bacteria | Saprophytic or <br> photosynthetic | Non-cellulose | Single celled with no <br> nucleus |
| Fungi | Saprophytic or <br> parasitic | Non-cellulose | Single or multicellular - <br> can be 'acellular' with it |
| Plants | Photosynthesis difficult to |  |  |

## Use the table to complete the classification poster in your booklet

## how fungi feed

## fungal cell

## dead food

1. Enzymes released onto food
2. Enzymes digest food

# LEARNING OUTCOMES 

Understand the difficulties in classifying:?

- species as a group of organisms, with shared features, which can breed together to produce fertile offspring ?
- viruses, which lack cellular organisation and are therefore considered by many biologists as non-living,
- and understand that classification systems change over time;

1. Some organisms are difficulit to classify e.g. Euglena, which has both plant and animal characteristics. This is why single-celled plants and animals are classified in a separate group called the Protoctista.
2. Sometimes it is difficult to identify which species an organism belongs to or where one species merges into another.
Definition - a species is a group of organisms, with shared features, which can breed together to form fertile offspring.

3. Viruses are a complex group and are very difficult to classify. All viruses, e.g. the HIV virus that causes AIDS, lack proper cellular organisation. They have a DNA/RNA core (DNA and RNA are nucleic acids - the building blocks of chromosomes) and an outer protein coat without the typical cytoplasm of other cells. They can only live if they gain access to other cells and many biologists therefore regard them as non-living.

## QUESTION 3 HOMEWORK BOOKLET



# LEARNINC OUTCOMES 

Use appropriate sampling techniques to investigate changes in the distribution of organisms within a sample area, limited to quadrats, pitfall traps, pooters and nets

# LEARNING OUTCOMES 

Measure biotic and abiotic factors, such as wind speed, water, pH , light, temperature and biodiversity (the number of plant and animal species)

# FINDING OUT ABOUT POPULATIONS IN A HABITAT 

Fieldwork provides information about what plants and animals live in a particular habitat and their numbers. This can be used to measure biodiversity.
It is therefore necessary
to be able to identify organisms, using keys and understand the different sampling techniques used to count them.

## We cannot actually count

 every plant or animesin a
## particular place,so



You should understand the importance of random sampling.
This is essential to avoid observer bias.


This means that the person collecting the data does not affect the result deliberately, e.g. by only counting in one part.

## Quarras are usualy used

# blut can also be used to count stov movine 

1. Lay out two tapes at right-angles in the area you want to sample.
2. Use random number tables to pick co-ordinates: - quadrats should be placed randomly so that a representative sample is taken.
3. Place a quadrat (of suitable size) at that point and count the organisms within it.
4. Repeat using using at least 20 quadrats, at other random coordinates across the grid:

- repeating increases the reliability.
- collecting across the whole grid area reduces the effect of an unusual distribution

5. Calculate the average number of organisms in each quadrat
6. Use the average to calculate an estimated total number of organisms in the grid area.

Quadrats can be used to estimate a population in an area which is fairly uniform. Examples include lawns, woods and open ground.
There are three ways to count organisms to estimate population size:

- 1. Density
(calculating the number of organisms per $\mathrm{m}^{2}$ );
- 2. Frequency
(number of number of quadrats that contain the organism)
- 3. Percentage cover
(estimating the percentage of the grid area that contains the organism)


## Percentage cover - do you agree with the estimates?



Figure 7.I Using a quadrat to measure percentage plant cover

- Percentage cover is an easy way to estimate population size.
- However, a disadvantage is that it is difficult to estimate exactly what percentage of the quadrat is actually covered by a particular type of plant, so it is normal to round up to the nearest $10 \%$. An exception is if there are any plants with a percentage cover of $1-5 \%-$ this is recorded as 1 and not 0 .
- This makes the results less reliable than estimating the density.



## BELTRANSECTS

## Belt transects ne sed to

 investigate
factors stich as mitenc

On the seashore a belt transect can be used to investigate the effect drying out, due to tidal changes, has on the different species found as you move inshore.




## sAMPLING ANIMAL POPULATIONS

How do we know that the invasive harlequin ladybird is affecting the populations of native ladybirds?

Insects are pulled into the oontainer

## POOTERS

## used to collect small

 invertebrates.



- Sweep nets allow you to collect large numbers of invertebrates that live in low vegetation (stems, tall grasses, flowers etc) or in rivers and ponds
- Sweep netting involves making a large rapid sweep with a net in between large paces.
- The invertebrates can be collected in a tray and counted


Pitfall traps must be properly set up:

- the top of the jar should be level with the soil surface
- cover the trap with a stone or piece of wood to keep out the rain, to make it dark and to stop birds eating your catch
- the traps must be checked often to avoid the animals escaping or being eaten before they are counted
- as with most methods a large number of traps makes results more reliable and minimises the effects of unusual results


## PITFALL TRAPS

Stones to prevent rain flooding the trap or birds or other predators from removing the trapped animals
jar sunk in a hole in the ground


## pooter exam question

- http://www.bbc.co.uk/scotland/learning/bites ize/standard/biology/biosphere/investigating an ecosystem rev5.shtml


# LEARNING OUTCOMES 

Use data collected (primary or secondary) as evidence to account for the distribution of organisms
Account for this distribution in terms of the adaptations of the organisms found to their environment and competition for resources, which can affect population growth, (water, light, space and minerals in plants and water, food, territory and mates in animals

## LEARNING OUTCOMES

Evaluate the validity and reliability of data collected during fieldwork when drawing conclusions about the methods of data collection and environment;


See worksheet (pages 54-55 textbook)

Each organism is adapted (suited) to the environment in which it lives.

This case study tries to explain why specific plants live at different distances from the seashore.

# problems? adaptations? 

Marfan glrass

# problems? 

## adaptations?

## problems?

## adaptations?

## 

## rex mos

1. Describe the area that was being studied.

- 1 km sand dune, divided into 3 sections.
- Section 1 from the start of the first sand dune inshore.
- Section 2 half way between 1 and 3 .
- Section 3 from the end of the last dune to to the start of the woodland.

2. What sampling method was used to study the distribution of plants along the sand dunes?

- 3 interrupted belt transects

3. How many samples were taken?

- 20 at each site

4. Name the biotic data collected.

- the average percentage cover
- of marram grass, common heather and gorse
- along each transect

5. Name the abiotic data collected

- Average light intensity reaching the ground
- Average soil moisture
- Average pH

6. Describe the conditions in which each of the plants prefers to grow.

- Marram grass: can grow in very unstable conditions such as those found near the shore, where the sand is constantly moving in the wind.
- Heather: small shrub, prefers stable moist soil
- Gorse: large shrub, prefers very stable soil with lots of moisture and nutrients

7. Describe the trends shown by the graphs.

- Marram grass is only common in transect 1
- Heather is not found in transect 1 but is found in transect 2
- Gorse is most common in transect 3 , but uncommon or absent at transects 1 and 2.

8. Use the biological knowledge about the 3 plants and the abiotic data to explain the trends.

- Marram grass can grow at the beginning of the dunes where there is not much water available in the sand, 20\%.
- It needs high light intensity to grow, $95 \%$.
- Further inland, where the conditions are more stable, there is less light and there is more moisture, so the other plants out-compete the marram grass.
- Heather cannot grow in transect 1 because there is not enough moisture.
- Gorse grows best in transect 3 where there is most water, 60\%.
- Gorse is a large shrub and creates shade, preventing the marram grass and heather from growing.

9. What features of this investigation make the results reliable?

- The plants were counted in 20 quadrats at each transect and an average was calculated.

11. Explain why you think this a fair test?

- Only one thing was being changed.

12. State the following:
the independent variable

- The position of the transect along the dune.
the dependent variable
- Percentage plant cover in each quadrat
the controlled variables
- Size of the quadrat
- Time of the year the measurements were taken.

It was not possible to keep the wind, light intensity, soil moisture or pH controlled. However these factors were measured and helped to explain the presence or absence of the plants at the different transects.

## QUESTIONS 1\&2 HOMEWORK BOOKLET



## LEARNING OUTCOMES

Use mathematical models to explain changes in populations
Explain the consequences of changes in population density on the environment, to include birth and death rates, emigration and immigration

## POPULATION CHANGES

Population numbers change over time.
Many factors can contribute to population change but they can be summarised by:


## This can be written as an equation:

POPULATION GROWTH = (birth rate + immigration) -
(death rate + emigration)

## in a decreasing population

## bilth late < death late

## emignation > immingration

## in an increasing population

## bilth late > death late

## eminglation < imminglation

## exponential phase



A population growth curve shows the numbers of organisms in a closed population over time.

## Describe and explain what is happening to the population in each area of the graph:

## Think about:



## Population numbers will also be affected by:

food SUPPIY总

disease

- Some animals are prey to others, eg rabbits are the prey of foxes. The fox is a predator. The predator must kill the prey for food. This increases the population of predator but will decrease the population of prey.
- The populations of a predator and its prey can be measured over many years.
- The following graph shows the changes in populations of hares and lynxes over 40 years.

cycle in years
in pairs, use the whiteboards to describe the trend/s in the graph above

There are 2 main patterns:

- The populations of each animal remains steady over the 10 years, increasing and decreasing between certain limits.
- Changes in the population of one organism affects the population of the other organism.
- When the lynx population increases, the hare population increases. This is because there are fewer hares being eaten.
- When the hare population decreases the lynx population increases as there is more food to eat.
- When the lynx population decreases the hare population decreases as there are more being eaten.

There are 2 main patterns:

- The populations of each animal remains steady over the 40 years, increasing and decreasing between certain limits.
- Changes in the population of one organism affects the population of the other organism.
- When the lynx population increases, the hare population decreases. This is because there are more hares being eaten.
- When the hare population decreases the lynx population decreases as there is less food to eat.
- When the lynx population decreases the hare population increases as there are fewer being eaten.



## HUMAN POPULATION GROWTH

# REASONS FOR INCREASING HUMAN POPULATION GROWTH 

## improved diet



# improved hygiene 

especially cleaner Water

## ilimproved health Care <br> II $\frac{5}{T}$



## improvements in agriculture



Read through your notes on classification before answering question 3 (p71) in the GCSE Biology textbook.

